ИНСТИТУТ КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ РАН

Шестнадцатая Всероссийская Открытая конференция «СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА »

Исследование выполнено при финансовой поддержке Российского Фонда Фундаментальных Исследований (РФФИ) в рамках научного проекта № 16-07-00177 «Разработка теоретических основ методов моделирования реализации предельно достижимых характеристик сверхвысокого пространственного и спектрального разрешения в стволах дистанционного зондирования с космических платформ».

Проблема передискретизации при формировании космического изображения сверхвысокого разрешения с моделированием группировки из каналов зондирования реального аппарата *Винтаев В.Н. (1), Жиленев М.Ю. (2), Ушакова Н.Н. (1)* (1) Белгородский университет кооперации, экономики и права, Белгород, Россия

(2) АО «Корпорация «ВНИИЭМ»», Москва, Россия

Исходные предпосылки

При формировании изображения сверхвысокого разрешения с использованием технологии моделирования группировки спутников с учетом возникающих сингулярностей в результатах необходимого синтеза и оптимизации частотноконтрастной характеристики (ЧКХ) трактов зондирования целесообразно модифицировать известные математические подходы, в том числе правила применимости основных принципов теоремы Котельникова дискретизации функций <u>для согласования условий сходимости итеративных</u> операторов деконволюции изображений и условий моделирования сингулярных выбросов на ЧКХ функциями с финитными спектрами

К чему предъявлять требования теоремы Котельникова?

 Выбирать частоты дискретизации по Котельникову, лавируя между верхними модами в формуле Ван Циттера при достижении критериев сходимости деконволюции в согласовании с модами модели интервалов меры нуль, КОТОРЫХ НЕТ НИ В ЧКХ ТРАКТА ЗОНДИРОВАИЯ НИ В ИЗОБРАЖЕНИЯХ С 7-10 КРАТНЫМ РАЗНОСОМ (СДВИГОМ) ПО «ПОЛОСЕ»

Базовая модель

Для отработки технологии работы с группировками спутников используется стартовая модель формирования космического изображения сверхвысокого разрешения по изображениям спутниковой группировки, построенная на инспирированных из реальных космических исходных изображений высокого разрешения паттернах, соответствующих группировке спутников – нормализованных субпиксельно сдвинутых изображениях с разными функциями рассеяния точки и разными апертурами пикселов с использованием лидирующего для одиночных спутников метода <u>сверхразрешения Iterative Back Projection (IBP)</u> с модернизацией условий останова итераций (на условия запрета возникновения контрастирования).

Необходимость выполнения деконволюции паттернов

- Повышению эффективности способствует деконволюция зарегистрированного или сформированного изображения в тракте дистанционного зондирования каждого аппарата, выполняемая с целью улучшения и восстановления резкости и, соответственно, пространственного разрешения, <u>уменьшающая на изображениях</u> <u>остаточные функции рассеяния точки (ФРТ), так и ФРТ из-за внесения</u> <u>в процессе обработки изображений, в том числе и из-за оверлейных</u> <u>операций.</u>
- Организуется деконволюция наиболее целесообразно в виде итеративного оператора (модифицированная формула Ван Циттера) на обрабатываемом паттерне (в том числе с использованием спектральных представлений оператора деконволюции (СПОД) по системе функций разложения изображений)

ПРОБЛЕМА РЕГУЛЯРИЗАЦИИ и ПРЕОБРАЗОВАНИЯ

Одной из проблем для моделирования группировок при этом является возникновение сингулярных значений в синтезируемой частотно контрастной характеристике (ЧКХ) тракта зондирования, необходимой для синтеза модифицированного фильтра Винера-Тихонова и преобразования его в итеративный оператор деконволюции изображений. Традиционная, регуляризация приводит в итоге к квазирешениям по резкости, то есть к улучшению резкости на не совсем тех изображениях с которыми необходимо работать и не всегда близких по некоторой норме к корректируемым изображениям

Решение проблемы сингулярности

предложен метод представления упомянутых сингулярностей моделями обобщенных сингулярных на мере нуль функций, парциальная свертка изображений с которыми при их подстановке в конечную формулу итеративной коррекции резкости - формулу Ван Циттера, дает решение по деконволюции с минимально возможными возмущениями измерительных характеристик обрабатываемых изображений, кроме увеличения резкости

Модификации правил применения теоремы Котельникова

1.Необходимо увеличивать частоту дискретизации изображений не бесконечно, а в соответствии с теоремой Котельникова, в связи с финитностью теперь всех пространственно-частотных спектров (ПЧС) изображений.

2. Выбирая частоту дискретизации из условия согласования с верхней модой ПЧС модели сингулярной на мере нуль функции необходимо отслеживать взаимосвязь изменяющихся из-за передискретизации критериев сходимости итеративного оператора деконволюции изображения с требованиями теоремы Котельникова

3. Необходимо идентифицировать наилучший результат по резкости (не совпадающий в общем случае с концом итераций) и устанавливать мажорирующую частоту дискретизации в задаче

Субпиксельная технология моделирования на реальных изображениях

Разработанная израильскими специалистами технология формирования изображения сверхвысокого разрешения <u>ІВР прописанным в технологии оператором</u> проектирования F, порождающим связанные системы уравнений для пикселов формируемых изображений, позволяет для аппаратов с серией каналов , подобных поочередно инициируемым трем каналам спутника <u>типа «Ресурс Д»»»(ДК), при нахождении субпиксельных</u> <u>взаимных сдвигов при совмещениях изображений</u> <u>каналов синтезировать порождающие операторы F</u> <u>для применения метода IBP</u>с целью формирования виртуального тракта зондирования и соответствующего ему изображения со сверхразрешением.

На рисунках 1-3 приведены фрагменты сформированных кадров всех каналов с «Ресурс Д» (территория Испании,

Рота) с субпиксельным и орбитальным (за счет СДИ) сдвигом всего формируемого сюжета

Рис.1. Канал 1 зондирования ареала с «Ресурс Д»

Рис.2. Канал 2 зондирования ареала с «Ресурс Д»

Рис. 3. Канал 3 зондирования с «Ресурс Д»

Выделенный пиксел исходного изображения(Рис.4)

Рис. 4. Окно из канала 1 с масштабированием для рассматривания пиксельной картины и дополнительным контрастированием сюжета изображения с выделенным пикселом

Пиксел выделялся методом нахождения максимума коэффициента корреляции ожидаемой «картины» и яркой точки. Видна сложная структура пиксельной картины яркой точки в виде ФРТ гауссового типа в данной апертуре пикселов.

Выявление одиночного пиксела же без наличия виртуальной ФРТ (гауссового вида) приводит к сильно неустойчивым решениям относительно каждого импульса. Этот вопрос еще требует исследования и развития. Виртуальный канал со сверхразрешением (с в два раза меньшими по апертуре пикселами на изображении), полученном на методе IBP с модернизациями на подавление остаточных ФРТ (Рис. 5)

Рис.5. Окно после формирования сверхразрешения с вдвое меньшими по апертуре пикселами

Виден яркий элемент на выделенном и ранее засвеченном пикселе (левый верхний субщиксед) – максимально засвечен вдвое меньший по апертуре пиксел, т.к. выполнялось подавление остаточной ФРТ на инспирированных изображениях по технологии согласованных с оптимальной ЧКХ возмущений операторов деконволюции изображений для формирования сверхразрешения.

Результаты

- Для случая создания цветного изображения каждое из трех изображений по каналам, участвует в процедуре сверхразрешения, и таких паттернов со сверхразрешением создается три при соответствующих задержках на несколько (от 1 до 3) строк (с дублирующим хранением в ОЗУ аппарата). Далее эти три изображения координатно совмещаются с назначением каждому из них цветового кода. При этом истинность цветового отображения местности зависит от точности настройки цветов на опорных ориентирах сравнением их с ориентирами на цветном изображении, полученном без режима сверхразрешения.
- Ниже приведены исходное изображение (Рис.6) и изображение со сверхразрешением (Рис.7), полученные соответствующими и описанными выше совмещениями без присвоения цветовых кодов родительским изображениям, т.е. в панхроматическом режиме.

Синтез сверхразрешения

Рис.б. Синтезированное по трем каналам панхроматическое изображение

Рис.7. Синтезированное по трем каналам панхроматическое изображение со сверхразрешением

Пространственно-частотные спектры (ПЧС) исходного и виртуального изображений (Рис.8, Рис.9)

Рис.8. ПЧС исходного изображения

Рис.9. ПЧС изображения со сверхразрешением

Существенные подробности

При совмещении изображений (в ІВР) всегда формируется специфическая снижающая разрешение остаточная ФРТ, вызванная неполнотой геометрических коррекций на участниках совмещения из-за отсутствующей на аппарате и предельно необходимой более детальной информации об уходах фактической СДИ от запрограммированной, а также о состоянии тангажа, рыскания, крена аппарата. В ЧКХ трактов в эксперименте присутствовали точки сингулярности и коэффициент передискретизации К при деконволюции достиг значения 9

Условия применения теоремы Котельникова

При формировании космического изображения сверхвысокого разрешения с моделированием группировки из изображений аппарата «Ресурс Д» частота дискретизации (при передискретизации на основе интерполяции) изображений и дискретного представления операторов деконволюции выбиралась из условия согласования с верхней модой ПЧС модели сингулярной на мере нуль функции (по теореме Котельникова) и корректировалась в сторону увеличения в зависимости от достижимости погрешности сходимости итеративного оператора деконволюции изображения.

РЕЗЮМЕ

Радиус ПЧС изображения со сверхразрешением относительно радиуса ПЧС исходного панхроматического изображения увеличен в 1,7 раза. Это меньше, чем полученные на соответствующих моделях ранее результаты от 2 до 4 раз увеличения радиуса ПЧС и, соответственно, пространственного разрешения по Фуко. На снижении профита технологии сверхразрешения сказывается отсутствие необходимого для двумерного паттерна четвертого независимого канала зондирования ареала и сам факт совмещения трех разнесенных пространственно, и, соответственно, разнесенных по требуемым параметрам изображений. При нарушениях: некорректной модели сингулярности на мере нуль, некорректно выбранной модели самого интервала меры нуль, некорректной процедуре согласования выбора частоты дискретизации изображений в связи с фактом сходимости итеративного оператора деконволюции к заданной погрешности получение результата, соответствующего изображению на рисунке 7, сильно осложняется

ПРИЛОЖЕНИЕ1. Формула погрешности итерационного процесса деконволюции (на основании леммы Меррея для линейного ограниченного оператора в Гильбертовом пространстве)

$$\rho(S_{\mathcal{H}}^{(n)}, S_{\mathcal{H}}) \leq (\|T\| \rho(S_{\mathcal{H}}^{(n)}, S_{\mathcal{H}}^{(n-1)}))/(1 - \|T\|)$$

 $\rho(S_{M}^{(n)}, S_{M}) = (\sum_{i,j} (S_{M_{ij}}^{(n)} - S_{M_{ij}})^{2})^{1/2}$ - задаваемое значение погрешности и евклидова

метрика, построенная на значениях яркостей пикселов изображений, а $\rho(S_{M}^{(n)}, S_{M}^{(n-1)})$ исчисляется аналогично, $S_{M}^{(n)}$ – корректируемое на этапе итерации изображение;

изображения *SH*, скорее всего, не существует, и в левой части не равенства стоит число не большее 10⁻¹ (по принятым нормативам). Норма оператора 7 в соответствии с технологией итеративной деконволюции равна

$$||T|| = \left\| F^{-1}(1 - H_M) * S_{\mathcal{U}}^{(n-1)} \right\| / \left\| S_{\mathcal{U}}^{(n-1)} \right\|,$$

где числитель и знаменатель – евклидова норма (формула Пифагора) на компонентах векторов; *F*-1 обратное Фурье-преобразование. Алгоритм согласования частоты дискретизации со сходимостью оператора деконволюции

1. <u>Задается начальное значение К =7</u>и значение погрешности итеративного оператора 10⁻¹. Выполняется процесс формирования панхроматических изображений с деконволюцией их для коррекции резкости.

2.Останов деконволюции выполняется или по достижении значения погрешности вычисления оператора деконволюции или на момент начала изменения контраста изображения.

3. <u>Если в последнем случае значение погрешности вычисления</u> оператора не достигнуто, то К увеличивается на 1 и процесс деконволюции повторяется с последующим увеличением К до достижения значения нормативной погрешности.

4. Можно К увеличивать и на нецелое число, но это направление еще нуждается в исследовании.

ИСХОДНАЯ ФОРМУЛА ДЛЯ ПОСТРОЕНИЯ ИТЕРАТИВНОГО ОПЕРАТОРА ДЕКОНВОЛЮЦИИ

 $F(S_{\mu}) = F(S_{R}) (H^{*}(\omega_{\nu}, \omega_{j}) / (|H(\omega_{\nu}, \omega_{j})|^{2} + \rho(\omega_{i}^{2} + \omega_{j}^{2})^{1/2}) + v(\omega_{\nu}, \omega_{j})) = F(S_{R}) (H_{M}^{-1} + v)$

Η(ω_i,ω_j)- Спектральное представление ФУНКЦИИ РАССЕЯНИЯ ТОЧКИ (ФРТ) по неполному набору опорных ориентиров

ρ(ω_i²+ω_j²)^{1/2} – подбираемый экспертом коэффициент регуляризации по шумовой составляющей

v(ω_i,ω_i)- частотно-зависимая добавка, определяемая по разнице ФРТ и оптимизированной ЧКХ тракта зондирования (оптимизация ЧКХ строится на принципах Нэша и Парето)

СИНТЕЗ ИТЕРАТИВНОГО ОПЕРАТОРА ДЕКОНВОЛЮЦИИ

Запишем $H_{x^{-1}} + v \in eude$ $H_{xx^{-1}} + H_{x^{-1}} + H_{x}, o < \lambda \le 1$ *Т.к.* $H_{xx} = H_{x}/(1 + H_{x})$ /заведомо меньше единицы, то вводя для них обозначение Y реализуем и теративный процесспо методу организации геометрической прогрессии

Представим У в виде геометрической прогрессии

$$Y^{-1} = (1 - (1 - Y))^{-1} = \sum_{\rho=0}^{\infty} (1 - Y)^{p},$$

откуда следует

F(S_H)=F(S_R)+(1-Y)F(S_R)+(1-Y)^sF(S_R)+...+(1-Y)ⁿF(S_R)+... и итеративная формула вида F^(o)(S_H)=F(S_R);

 $F^{(n)}(S_{H}) = F(S_{R}) + (1 - Y)F^{(n-1)}(S_{H}).$

$$S^{(n)}_{H} = S_{R};$$

$$S^{(n)}_{H} = S_{R} + F^{*}(1 - Y) ** S^{(n-1)}_{H},$$

где F' – обратное Фурье-преобразование, ** - символ операции свертки

Приложение 2. Учет сингулярности в ЧКХ и в формуле Ван Циттера

- **1.Возникают сингулярные значения достаточно часто**, так как **используемый в знаменателе** выражения для синтеза ЧКХ пространственно-частотный спектр (ПЧС) первично откорректированного изображения **имеет достаточное количество нулей**
- 2. Применяемые в практике аналогичных операций со спектрами <u>методы</u> <u>регуляризации Тихонова или игнорирование соответствующих</u> <u>пространственных частот в решаемой задаче</u> с уменьшением в пределе полос «игнорирования») <u>приводят всегда к работе с не тем</u> <u>изображением.</u>
- 3. <u>В работе сохраняется все как есть</u>: <u>используется модель</u> <u>сингулярности на основе дельта - функции как функции Шварца ,</u> <u>сингулярной на мере нуль с интегрированием на мере Лебега с</u> регуляризованными моделями дельта- функций и ее производных с финитными спектрами

Разбивка ПЧС

Для решаемых в спектральной области задач из всего спектрального диапазона в силу ортонормированности базисов спектральных представлений вырезаются субполосы, содержащие проблему сингулярности, на них одновременно с оставшимися интервалами решается задача деконволюции, а потом производится сборка результата на спектральной плоскости по методу объединения множеств аппликат результирующих изображений

Сборка выделенных проблемных субполос

$$S_{\mathcal{H}} = F^{-1}(\bigcup_{i,j}^{N,M} \mu_{i,j}F(S_{\mathcal{H}})_{ij})$$

где S_x – полное восстанавливаемое изображение; $(S_x)_{\overline{x}}$ – восстанавливаемое изображение в i,j-той выделенной субполосе, F^{-1} , F – обратное и прямое двумерное Фурье-преобразование, соответственно, $\mu_{x,i}$ – весовые коэффициенты (функции принадлежности), а сами множества отсчетов $F(S_x)_x$ считаются нечеткими с изопланатичными функциями принадлежности равными $\mu_{x,i}$.

Функции принадлежности и вычисляются по правилу:

$$\mu_{ij} = \left\| F(S_{\mathcal{U}})_{ij} \right\|^2 / \sum_{i,j}^{N,M} \left\| F(S_{\mathcal{U}})_{ij} \right\|^2$$

Такой подход необходим, так как при разбиении спектра изображения на субполосы, номера, присвоенные ранее гармоникам не меняются, все абсолютно результаты деконволюции расширяются по полосе ПЧС в высшую сторону и при описанной композиции множества частот пересекаются.

Для спектральных участков задачи коррекции с сингулярными функциями все соотношения, при оптимизации ЧКХ строятся классически в виде интегралов – скалярных произведений на основные функции , т.е. рассматриваются над полем основных функций класса C^(∞) (подразумевая при этом слабую сходимость при численном интегрировании). Осциллирующая экспонента может быть такой основной функцией, тем более, что норма ее равна единице, но в работе использовалась основная <u>функция $\varphi = \exp(-\varphi)$ </u>, где φ может ограничиваться верхним значением пространственной частоты φ в окне пропускания тракта зондирования.

Например, соотношение максимизации объема под огибающей ЧКХ, формализующее требование из набора требований при оптимизации ЧКХ преобразуется за счет организации на нем указанного выше скалярного произведения к виду:

$$\int_{0}^{\omega_{i}} (\Psi KX(\omega_{i}, \omega_{j}) \delta \omega_{i} \delta \omega_{j}) \varphi d\omega = R_{1}(1 - \exp(-\omega_{e})) = \max$$

где M и N – размеры, в отсчетах спектрального окна задачи, $\delta \omega_i$ и $\delta \omega_j$ – приращения значений мод спектрального представления, равные $2\pi/N$ и $2\pi/M$.

Результаты сравнения полученных обратными процессами экспериментальных изображений с исходным изображением (Рис.10– Рис.12) с аппарата OrbView-3 (Аэропорт Хьюстон, США)

Рис.10. Невязка с исходным изображением при деконволюции с моделированием синтудярностей (слева исходное изображение)

Рис.11. Невязка с исходным изображением при деконнолюции с регуляризацией с методом замены нулевого отсчета в знаменателе выражения для свитеза ЧКХ значением 0,01

Рис.12. Невязка с исходным изображением при деконколюции с регуляризацией с методом замены нулевого отсчета в знаменателе выражения для синтеза ЧКХ значением 0,1

ТРИ ВАРИАНТА МОДЕЛИ

Вариант 1. При снижении апертур ФРТ для инспирированных изображений с согласованием применяемых методов подавления ФРТ с максимальным уровнем передискретизации всех изображений под изображение с минимальной апертурой пиксела в модели реализуется максимальная резкость, но резидентное контрастирование может возникнуть на ранних итерациях оператора деконволюции, что требует варьировать все возмущения формул Винера-Тихонова и формул Ван-Циттера в специальной коррекции резкости .

Вариант 2. С согласованием применяемых методов подавления ФРТ с уровнем апертур пикселов самих изображений в модели реализуется резкость на уровне 0,7-0,9 от максимальной полученной резкости с наличием остаточной ФРТ на результате работы модели, и необходима дополнительная работа по подавлению ФРТ на результате выполненных преобразований.

Вариант 3. С согласованием применяемых методов подавления ФРТ со средневзвешенной апертурой пиксела в группировке в модели реализуется резкость на уровне 0,5-0,8 от максимальной с остаточной ФРТ на результирующем изображении

Во всех случаях наблюдается несовпадение момента выявления лучшего результата по резкости и момента достижения требуемой сходимости оператора деконволюции: средневзвешенные моды ПЧС уменьшающейся по апертуре ФРТ и изображения имеют диспергирующий разнос на осях частот при деконволюции

Кривая суммирования в ІВР

Необходимо отметить главное – суммирование изображений выполняется вдоль кривой, пересекающей плоскости всех изображений, и каждый раз имеющей на строках и столбцах изображений в общем случае попиксельного суммирования разные и ненулевые проекции на эти плоскости, определяемые субпиксельным сдвигом из-за разновременности получения этих изображений, разных текущих значений составляющих фактической СДИ, тангажей, рысканий и кренов оптической оси аппарата, которые, если бы речь не шла о формировании сверхразрешения, просто не учитывались бы. Суммироваты приходится при предварительном представлении изображений в новой пиксельной сетке, соответствующей дискретности измерения сдвигов. При этом значения СДИ определяются постфактум по снимкам или специальными бортовыми средствам, или с использованием цифровой модели рельефа (ЦМР) зондируемой поверхности по формуле, выдвинутой Жиленевым М.Ю.

ДЛЯ СДИ Предложено при программировании надирных съемок и полетных калибровок БОЭА непосред-ственно в расчетах СДИ и времени накопления сигнала на ФПЗС использовать формулы [Формула расчета движения изображения при орбитальной съемке планет оптико-электронной аппаратурой/ М.Ю. Жиленев, В.Н. Винтаев. Телекоммуникации (TELECOMMUNICATIONS AND RADIO ENGINEERING)- М.: Наука и технологии, № 7, 2011, с.2-7.]

 Отклонение значений скорости движения изображения (СДИ) на фотоприемниках бортовой оптико-электронной аппаратуры (БОЭА) космического аппарата (КА) в сторону уменьшения от верно заданного программного значения приводит к формированию изображения с периодическими полосами и с пониженным отношением сигнал/шум, а в сторону увеличения – формируется функция рассеяния точки (ФРТ) – смаз.

Вывод формул составляющих СДИ в ФП от естественных источников, их свойства и применение

Рис.1. Вектор относительной скорости точки на Земле при ее орбитальной съемке и его естественные составляющие в отсутствие специального изменения программными движениями осей БОЭА

К выводу формул составляющих СДИ в ФП от естественных источников (1)

Рис. 2. К определению составляющих суммарного вектора СДИ в картинной плоскости БОЭА в отсутствие его специального изменения программными движениями осей БОЭА

К выводу формул составляющих СДИ в ФП от естественных источников

$$V_{CM}_{3} = \frac{-\omega_{3} \cdot R_{3} \cdot \cos \varphi \cdot f}{H}; \qquad (6)$$

$$\varphi = B + \alpha_{3} \cdot \sin(2\varphi), z \partial e: \qquad (7)$$

$$\alpha_{3}^{2} - c \mathcal{H} a mue 3em \pi u;$$

$$V_{\text{RAE}} = \zeta = \frac{\left[-\omega_{\zeta} \cdot R_{\zeta} \cdot \cos(B + \alpha_{\zeta} \cdot \sin 2\varphi)\right] \cdot f}{H}; \quad (8)$$
$$W^{2}_{\text{IDA}} = \mu \cdot \left(\frac{2}{r} - \frac{1}{a}\right), \tilde{a}\ddot{a}\ddot{a}: \quad (9)$$

μ -гравитационный параметр Земли; а –большая полуось орбиты КЛА; r –радиус-вектор положения КЛА на орбите

$$W_{OPF} = \sqrt{\frac{\mu}{r}}; \qquad (10)$$

Подставляем (9) в (5) получаем трассовую составляющую СДИ для эллиптической орбиты:

$$V_{\bar{N}\bar{A}\bar{E}} = \frac{f \cdot \sqrt{\mu \cdot \left(\frac{2}{r} - \frac{1}{a}\right)}}{H}$$
(11)

Подстановка (10) в (5) дает трассовую СДИ для круговой орбиты:

$$V_{CAH_{-}T} = \frac{f \cdot \sqrt{\frac{\mu}{r}}}{H}$$
(12)

$$V_{CAH_{-}T} = \frac{f \cdot \sqrt{\frac{\mu}{R+H}}}{H}$$
(13)

$$V_{CAH_{-}T} = \frac{f \cdot \sqrt{\frac{\mu+U}{R+H}}}{H}, z \partial e:$$
(14)
U -геопотенциал Земли.

$$V_{CAH_{-}T} > V_{CAH_{-}3} - Экватор$$
(15)

 $V_{C,M_{T}} >> V_{C,M_{3}} - noлюс;$ (16)

Разрешение по Удоду В.А.

Пространственное разрешение по Фуко Ř_{фуко} на мере Лебега µ

0 <ЧКХ (ω)_{предель} ≤ ЧКХ (ω) Ŕ_{фуко} =µ{ ω | ω > 0, inf [ЧКХ (ω) - ЧКХ (ω)_{предель}] , inf ЧКХ (ω)> 0 }

Удод В.А. Оптимальная по разрешающей способности линейная фильтрация изображений. – Дисс. на соискание ученой степени доктора технических наук по спец. 05.13.01 «Системный анализ, управление и обработка информации (техника)». – Томский государственный университет, 2002, 338 с.

Соотношения оптимизации ЧКХ

В соответствии с объективными требованиями получим соотношения: a) ЧКХ (ω_i, ω_j)δ ω_i δ $\omega_j = F(S_R) / F (S_R + a grad_{\alpha}(S_R))$ δ ω_i δ $\omega_j = R_1 = max$, где *M* и *N* – размеры в отсчетах спектрального окна задачи, δ ω_i и δ ω_j – приращения значений мод СП, равные 2π/N и 2π/M.

Операции над огибающей ЧКХ:

б) grad ЧКХ ($\omega_{i'}\omega_{j'}$)= R_2 =min при $\omega < \omega_2$; (в индефинитной метрике с инволюцией на мнимой единице)

в) $D_{\omega i}$ ЧКХ(ω_{i}, ω_{j})= R_{3} <0 при $\omega > \omega_{2}$, ω_{j} ЧКХ(ω_{i}, ω_{j})= R_{3} <0 при $\omega > \omega_{2}$, $D_{\omega i}$, $D_{\omega j}$ - производные вдоль осей ω_{i}, ω_{j} , соответственно;

$$\omega_{e} - \omega_{2} = R_{4} = min$$

(вычисления производных и градиентов выполняются в координатном пространстве ПЧС).

Выражение для спада ЧКХ можно переписать в виде:

```
ЧКХ(\omega)- ЧКХ(\omega_2)<0 при \omega>\omega_2;
```

г)

 $\max \mathsf{HKX}(\omega_{i}, \omega_{j}) - max \left(H^{*}(\omega_{i}, \omega_{j}) / (|H(\omega_{i}, \omega_{j})|^{2} + \rho(\omega_{i}^{2} + \omega_{j}^{2})^{1/2})\right)^{-1} = R_{4} = min > 0$

Литература:

Винтаев В.Н., Ушакова Н.Н. Нетривиальная коррекция космических изображений высокого разрешения. Саарбрюккен, Германия: Lambert Academic Publishing, 2018. 208 <u>C.</u>

Макриденко Л. А., Волков С. Н., Геча В. Я., Жиленёв М. Ю., Казанцев С. Г. Основные источники снижения качества изображений земли, получаемых при орбитальной оптической съёмке с борта МКА//Вопросы электромеханики. Труды ВНИИЭМ. 2017. Т. 160. С. 3-19.

Ушакова Н.Н. Математическая модель процесса формирования космического изображения высокого и сверхвысокого разрешения в группировке космических аппаратов//Научные ведомости Белгородского государственного университета. 2016. № 20 (44). С. 155-167.

Все отмеченные в презентации программные модули имеются на съемном диске — возможна демонстрация их работы с изображениями

СПАСИБО ЗА ВНИМАНИЕ!

МОСКВА, 2018 ГОД